
9
Probabilistic algorithms

It is sometimes useful to endow our algorithms with the ability to generate random
numbers. In fact, we have already seen two examples of how such probabilistic
algorithms may be useful:

• at the end of §3.4, we saw how a probabilistic algorithm might be used to
build a simple and efficient primality test; however, this test might incor-
rectly assert that a composite number is prime; in the next chapter, we
will see how a small modification to this algorithm will ensure that the
probability of making such a mistake is extremely small;

• in §4.5, we saw how a probabilistic algorithm could be used to make Fer-
mat’s two squares theorem constructive; in this case, the use of randomiza-
tion never leads to incorrect results, but the running time of the algorithm
was only bounded “in expectation.”

We will see a number of other probabilistic algorithms in this text, and it is high
time that we place them on a firm theoretical foundation. To simplify matters,
we only consider algorithms that generate random bits. Where such random bits
actually come from will not be of great concern to us here. In a practical imple-
mentation, one would use a pseudo-random bit generator, which should produce
bits that “for all practical purposes” are “as good as random.” While there is a
well-developed theory of pseudo-random bit generation (some of which builds on
the ideas in §8.9), we will not delve into this here. Moreover, the pseudo-random
bit generators used in practice are not based on this general theory, and are much
more ad hoc in design. So, although we will present a rigorous formal theory of
probabilistic algorithms, the application of this theory to practice is ultimately a bit
heuristic; nevertheless, experience with these algorithms has shown that the theory
is a very good predictor of the real-world behavior of these algorithms.

277

278 Probabilistic algorithms

9.1 Basic definitions
Formally speaking, we will add a new type of instruction to our random access
machine (described in §3.2):

random bit This type of instruction is of the form γ ← RAND, where γ takes the
same form as in arithmetic instructions. Execution of this type of instruc-
tion assigns to γ a value sampled from the uniform distribution on {0, 1},
independently from the execution of all other random-bit instructions.

Algorithms that use random-bit instructions are called probabilistic (or ran-
domized), while those that do not are called deterministic.

In describing probabilistic algorithms at a high level, we shall write “y ¢←{0, 1}”
to denote the assignment of a random bit to the variable y, and “y ¢← {0, 1}×`” to
denote the assignment of a random bit string of length ` to the variable y.

To analyze the behavior of a probabilistic algorithm, we first need a probability
distribution that appropriately models its execution. Once we have done this, we
shall define the running time and output to be random variables associated with
this distribution.

9.1.1 Defining the distribution
It would be desirable to define a probability distribution that could be used for all
algorithms and all inputs. While this can be done in principle, it would require
notions from the theory of probability more advanced than those we developed in
the previous chapter. Instead, for a given probabilistic algorithm A and input x, we
shall define a discrete probability distribution that models A’s execution on input
x. Thus, every algorithm/input pair yields a different distribution.

To motivate our definition, consider Example 8.43. We could view the sample
space in that example to be the set of all bit strings consisting of zero or more
0 bits, followed by a single 1 bit, and to each such bit string ω of this special
form, we assign the probability 2−|ω|, where |ω| denotes the length of ω. The
“random experiment” we have in mind is to generate random bits one at a time until
one of these special “halting” strings is generated. In developing the definition of
the probability distribution for a probabilistic algorithm, we simply consider more
general sets of “halting” strings, as determined by the algorithm and its input.

So consider a fixed algorithm A and input x. Let λ be a finite bit string of length,
say, `. We can use λ to “drive” the execution of A on input x for up to ` execution
steps, as follows: for each step i = 1, . . . , `, if the ith instruction executed by A
is γ ← RAND, the ith bit of λ is assigned to γ. In this context, we shall refer to
λ as an execution path. The reader may wish to visualize λ as a finite path in an

9.1 Basic definitions 279

infinite binary tree, where we start at the root, branching to the left if the next bit
in λ is a 0 bit, and branching to the right if the next bit in λ is a 1 bit.

After using λ to drive A on input x for up to ` steps, we might find that the
algorithm executed a halt instruction at some point during the execution, in which
case we call λ a complete execution path; moreover, if this halt instruction was the
`th instruction executed by A, then we call λ an exact execution path.

Our intent is to define the probability distribution associated withA on input x to
be P : Ω → [0, 1], where the sample spaceΩ is the set of all exact execution paths,
and P(ω) := 2−|ω| for each ω ∈ Ω. However, for this to work, all the probabilities
must sum to 1. The next theorem at least guarantees that these probabilities sum to
at most 1. The only property of Ω that really matters in the proof of this theorem
is that it is prefix free, which means that no exact execution path is a proper prefix
of any other.

Theorem 9.1. Let Ω be the set of all exact execution paths for A on input x. Then
∑

ω∈Ω 2−|ω| ≤ 1.

Proof. Let k be a non-negative integer. LetΩk ⊆ Ω be the set of all exact execution
paths of length at most k, and let αk :=

∑

ω∈Ωk
2−|ω|. We shall show below that

αk ≤ 1. (9.1)

From this, it will follow that
∑

ω∈Ω

2−|ω| = lim
k→∞

αk ≤ 1.

To prove the inequality (9.1), consider the set Ck of all complete execution paths
of length equal to k. We claim that

αk = 2−k|Ck|, (9.2)

from which (9.1) follows, since clearly, |Ck| ≤ 2k. So now we are left to prove
(9.2). Observe that by definition, each λ ∈ Ck extends some ω ∈ Ωk; that is, ω is
a prefix of λ; moreover, ω is uniquely determined by λ, since no exact execution
path is a proper prefix of any other exact execution path. Also observe that for
each ω ∈ Ωk, if Ck(ω) is the set of execution paths λ ∈ Ck that extend ω, then
|Ck(ω)| = 2k−|ω|, and by the previous observation, {Ck(ω)}ω∈Ωk is a partition of
Ck. Thus, we have

αk =
∑

ω∈Ωk

2−|ω| =
∑

ω∈Ωk

2−|ω|
∑

λ∈Ck (ω)

2−k+|ω| = 2−k
∑

ω∈Ωk

∑

λ∈Ck (ω)

1 = 2−k|Ck|,

which proves (9.2). 2

280 Probabilistic algorithms

From the above theorem, if Ω is the set of all exact execution paths for A on
input x, then

α :=
∑

ω∈Ω

2−|ω| ≤ 1,

and we say that A halts with probability α on input x. If α = 1, we define the
distribution P : Ω → [0, 1] associated with A on input x, where P(ω) := 2−|ω| for
each ω ∈ Ω.

We shall mainly be interested in algorithms that halt with probability 1 on all
inputs. The following four examples provide some simple criteria that guarantee
this.

Example 9.1. Suppose that on input x, A always halts within a finite number of
steps, regardless of its random choices. More precisely, this means that there is
a bound ` (depending on A and x), such that all execution paths of length ` are
complete. In this case, we say that A’s running time on input x is strictly bounded
by `, and it is clear that A halts with probability 1 on input x. Moreover, one can
much more simply model A’s computation on input x by working with the uniform
distribution on execution paths of length `. 2

Example 9.2. Suppose A and B are probabilistic algorithms that both halt with
probability 1 on all inputs. Using A and B as subroutines, we can form their serial
composition; that is, we can construct the algorithm

C(x) : output B(A(x)),

which on input x, first runs A on input x, obtaining a value y, then runs B on input
y, obtaining a value z, and finally, outputs z. We claim that C halts with probability
1 on all inputs.

For simplicity, we may assume thatA places its output y in a location in memory
where B expects to find its input, and that B places its output in a location in
memory where C’s output should go. With these assumptions, the program for C is
obtained by simply concatenating the programs for A and B, making the following
adjustments: every halt instruction in A’s program is translated into an instruction
that branches to the first instruction of B’s program, and every target in a branch
instruction in B’s program is increased by the length of A’s program.

Let Ω be the sample space representing A’s execution on an input x. Each
ω ∈ Ω determines an output y, and a corresponding sample space Ω′ω representing
B’s execution on input y. The sample space representing C’s execution on input x
is

Ω′′ = {ωω′ : ω ∈ Ω,ω′ ∈ Ω′ω},

9.1 Basic definitions 281

where ωω′ is the concatenation of ω and ω′. We have
∑

ωω′∈Ω′′
2−|ωω

′| =
∑

ω∈Ω

2−|ω|
∑

ω′∈Ω′ω

2−|ω
′| =

∑

ω∈Ω

2−|ω| · 1 = 1,

which shows that C halts with probability 1 on input x. 2

Example 9.3. Suppose A, B, and C are probabilistic algorithms that halt with
probability 1 on all inputs, and that A always outputs either true or false. Then we
can form the conditional construct

D(x) : if A(x) then output B(x) else output C(x).

By a calculation similar to that in the previous example, it is easy to see that D
halts with probability 1 on all inputs. 2

Example 9.4. Suppose A and B are probabilistic algorithms that halt with proba-
bility 1 on all inputs, and that A always outputs either true or false. We can form
the iterative construct

C(x) : while A(x) do x ← B(x)
output x.

Algorithm C may or may not halt with probability 1. To analyze C, we define
an infinite sequence of algorithms {Cn}∞n=0; namely, we define C0 as

C0(x) : halt,

and for n > 0, we define Cn as

Cn(x) : if A(x) then Cn−1(B(x)).

Essentially, Cn drives C for up to n loop iterations before halting, if necessary, in
C0. By the previous three examples, it follows by induction on n that each Cn halts
with probability 1 on all inputs. Therefore, we have a well-defined probability
distribution for each Cn and each input x.

Consider a fixed input x. For each n ≥ 0, let βn be the probability that on input
x, Cn terminates by executing algorithm C0. Intuitively, βn is the probability that C
executes at least n loop iterations; however, this probability is defined with respect
to the probability distribution associated with algorithmCn on input x. It is not hard
to see that the sequence {βn}∞n=0 is non-increasing, and so the limit β := limn→∞ βn
exists; moreover, C halts with probability 1 − β on input x.

On the one hand, if the loop in algorithm C is guaranteed to terminate after a
finite number of iterations (as in a “for loop”), then C certainly halts with proba-
bility 1. Indeed, if on input x, there is a bound ` (depending on x) such that the
number of loop iterations is always at most `, then β`+1 = β`+2 = · · · = 0. On the
other hand, if on input x, C enters into a good, old-fashioned infinite loop, then C

282 Probabilistic algorithms

certainly does not halt with probability 1, as β0 = β1 = · · · = 1. Of course, there
may be in-between cases, which require further analysis. 2

We now illustrate the above criteria with a couple of some simple, concrete
examples.

Example 9.5. Consider the following algorithm, which models an experiment in
which we toss a fair coin repeatedly until it comes up heads:

repeat
b

¢← {0, 1}
until b = 1

For each positive integer n, let βn be the probability that the algorithm executes
at least n loop iterations, in the sense of Example 9.4. It is not hard to see that
βn = 2−n+1, and since βn → 0 as n → ∞, the algorithm halts with probability
1, even though the loop is not guaranteed to terminate after any particular, finite
number of steps. 2

Example 9.6. Consider the following algorithm:

i← 0
repeat

i← i + 1
σ

¢← {0, 1}×i
until σ = 0×i

For each positive integer n, let βn be the probability that the algorithm executes
at least n loop iterations, in the sense of Example 9.4. It is not hard to see that

βn =
n−1
∏

i=1

(1 − 2−i) ≥
n−1
∏

i=1

e−2−i+1
= e−

∑n−2
i=0 2−i ≥ e−2,

where we have made use of the estimate (iii) in §A1. Therefore,

lim
n→∞

βn ≥ e−2 > 0,

and so the algorithm does not halt with probability 1, even though it never falls into
an infinite loop. 2

9.1.2 Defining the running time and output
Let A be a probabilistic algorithm that halts with probability 1 on a fixed input x.
We may define the random variable Z that represents A’s running time on input x,
and the random variable Y that represents A’s output on input x.

9.1 Basic definitions 283

Formally, Z and Y are defined using the probability distribution on the sample
space Ω, defined in §9.1.2. The sample space Ω consists of all exact execution
paths for A on input x. For each ω ∈ Ω, Z(ω) := |ω|, and Y(ω) is the output
produced by A on input x, using ω to drive its execution.

The expected running time of A on input x is defined to be E[Z]. Note that in
defining the expected running time, we view the input as fixed, rather than drawn
from some probability distribution. Also note that the expected running time may
be infinite.

We say that A runs in expected polynomial time if there exist constants a, b,
and c, such that for all n, and for all inputs x of size n, the expected running time
of A on input x is at most anb + c. We say that A runs in strict polynomial time
if there exist constants a, b, and c, such that for all n, and for all inputs x of size n,
A’s running time on input x is strictly bounded by anb + c (as in Example 9.1).

Example 9.7. Consider again the algorithm in Example 9.5. Let L be the random
variable that represents the number of loop iterations executed by the algorithm.
The distribution of L is a geometric distribution, with associated success probability
1/2 (see Example 8.44). Therefore, E[L] = 2 (see Example 8.46). Let Z be the
random variable that represents the running time of the algorithm. We have Z ≤ cL,
for some implementation-dependent constant c. Therefore, E[Z] ≤ c E[L] = 2c. 2

Example 9.8. Consider the following probabilistic algorithm that takes as input a
positive integer m. It models an experiment in which we toss a fair coin repeatedly
until it comes up heads m times.

k ← 0
repeat

b
¢← {0, 1}

if b = 1 then k ← k + 1
until k = m

Let L be the random variable that represents the number of loop iterations executed
the algorithm on a fixed input m. We claim that E[L] = 2m. To see this, define
random variables L1, . . . , Lm, where L1 is the number of loop iterations needed to
get b = 1 for the first time, L2 is the number of additional loop iterations needed
to get b = 1 for the second time, and so on. Clearly, we have L = L1 + · · · + Lm,
and moreover, E[Li] = 2 for i = 1, . . . ,m; therefore, by linearity of expectation, we
have E[L] = E[L1] + · · · + E[Lm] = 2m. It follows that the expected running time
of this algorithm on input m is O(m). 2

284 Probabilistic algorithms

Example 9.9. Consider the following algorithm:

n← 0
repeat n← n + 1, b

¢← {0, 1} until b = 1
repeat σ

¢← {0, 1}×n until σ = 0×n

The expected running time is infinite (even though it does halt with probability 1).
To see this, define random variables L1 and L2, where L1 is the number of iterations
of the first loop, and L2 is the number of iterations of the second. As in Exam-
ple 9.7, the distribution of L1 is a geometric distribution with associated success
probability 1/2, and E[L1] = 2. For each k ≥ 1, the conditional distribution of L2

given L1 = k is a geometric distribution with associated success probability 1/2k,
and so E[L2 | L1 = k] = 2k. Therefore,

E[L2] =
∑

k≥1

E[L2 | L1 = k] P[L1 = k] =
∑

k≥1

2k · 2−k =
∑

k≥1

1 =∞. 2

We have presented a fairly rigorous definitional framework for probabilistic
algorithms, but from now on, we shall generally reason about such algorithms at a
higher, and more intuitive, level. Nevertheless, all of our arguments can be trans-
lated into this rigorous framework, the details of which we leave to the interested
reader. Moreover, all of the algorithms we shall present halt with probability 1 on
all inputs, but we shall not go into the details of proving this (but the criteria in
Examples 9.1–9.4 can be used to easily verify this).

EXERCISE 9.1. Suppose A is a probabilistic algorithm that halts with probability
1 on input x, and let P : Ω → [0, 1] be the corresponding probability distribution.
Let λ be an execution path of length `, and assume that no proper prefix of λ is
exact. Let Eλ := {ω ∈ Ω : ω extends λ}. Show that P[Eλ] = 2−`.

EXERCISE 9.2. Let A be a probabilistic algorithm that on a given input x, halts
with probability 1, and produces an output in the set T . Let P be the correspond-
ing probability distribution, and let Y and Z be random variables representing the
output and running time, respectively. For each k ≥ 0, let Pk be the uniform
distribution on all execution paths λ of length k. We define random variables Yk
and Zk, associated with Pk, as follows: if λ is complete, we define Yk(λ) to be
the output produced by A, and Zk(λ) to be the actual number of steps executed by
A; otherwise, we define Yk(λ) to be the special value “⊥” and Zk(λ) to be k. For
each t ∈ T , let ptk be the probability (relative to Pk) that Yk = t, and let µk be the
expected value (relative to Pk) of Zk. Show that:

(a) for each t ∈ T , P[Y = t] = lim
k→∞

ptk;

9.2 Generating a random number from a given interval 285

(b) E[Z] = lim
k→∞

µk.

EXERCISE 9.3. Let A1 and A2 be probabilistic algorithms. Let B be any proba-
bilistic algorithm that always outputs 0 or 1. For i = 1, 2, let A′i be the algorithm
that on input x computes and outputs B(Ai(x)). Fix an input x, and let Y1 and Y2

be random variables representing the outputs of A1 and A2, respectively, on input
x, and let Y ′1 and Y ′2 be random variables representing the outputs of A′1 and A′2,
respectively, on input x. Assume that the images of Y1 and Y2 are finite, and let
δ := ∆[Y1; Y2] be their statistical distance. Show that |P[Y ′1 = 1]−P[Y ′2 = 1]| ≤ δ.

9.2 Generating a random number from a given interval
Suppose we want to generate a number, uniformly at random from the interval
{0, . . . ,m − 1}, for a given positive integer m.

Ifm is a power of 2, saym = 2`, then we can do this directly as follows: generate
a random `-bit string σ, and convert σ to the integer I (σ) whose base-2 represen-
tation is σ; that is, if σ = b`−1b`−2 · · · b0, where the bi’s are bits, then

I (σ) :=
`−1
∑

i=0

bi2i.

In the general case, we do not have a direct way to do this, since we can only
directly generate random bits. But the following algorithm does the job:

Algorithm RN. On input m, where m is a positive integer, do the following, where
` := dlog2 me:

repeat
σ

¢← {0, 1}×`
y ← I (σ)

until y < m
output y

Theorem 9.2. The expected running time of Algorithm RN is O(len(m)), and its
output is uniformly distributed over {0, . . . ,m − 1}.

Proof. Note that m ≤ 2` < 2m. Let L denote the number of loop iterations of this
algorithm, and Z its running time. With every loop iteration, the algorithm halts
with probability m/2`, and so the distribution of L is a geometric distribution with
associated success probability m/2` > 1/2. Therefore, E[L] = 2`/m < 2. Since
Z ≤ c len(m) · L for some constant c, it follows that E[Z] = O(len(m)).

Next, we analyze the output distribution. Let Y denote the output of the algo-
rithm. We want to show that Y is uniformly distributed over {0, . . . ,m − 1}. This

286 Probabilistic algorithms

is perhaps intuitively obvious, but let us give a rigorous justification of this claim.
To do this, for i = 1, 2, . . . , let Yi denote the value of y in the ith loop iteration;
for completeness, if the ith loop iteration is not executed, then we define Yi := ⊥.
Also, for i = 1, 2 . . . , let Hi be the event that the algorithm halts in the ith loop
iteration (i.e., Hi is the event that L = i). Let t ∈ {0, . . . ,m − 1} be fixed.

First, by total probability (specifically, the infinite version of (8.9), discussed in
§8.10.2), we have

P[Y = t] =
∑

i≥1

P[(Y = t) ∩ Hi] =
∑

i≥1

P[(Yi = t) ∩ Hi]. (9.3)

Next, observe that as each loop iteration works the same as any other, it follows
that for each i ≥ 1, we have

P[(Yi = t) ∩ Hi | L ≥ i] = P[(Y1 = t) ∩ H1] = P[Y1 = t] = 2−`.

Moreover, since Hi implies L ≥ i, we have

P[(Yi = t) ∩ Hi] = P[(Yi = t) ∩ Hi ∩ (L ≥ i)]
= P[(Yi = t) ∩ Hi | L ≥ i] P[L ≥ i] = 2−` P[L ≥ i],

and so using (9.3) and the infinite version of Theorem 8.17 (discussed in §8.10.4),
we have

P[Y = t] =
∑

i≥1

P[(Yi = t) ∩ Hi] =
∑

i≥1

2−` P[L ≥ i] = 2−`
∑

i≥1

P[L ≥ i]

= 2−` · E[L] = 2−` · 2`/m = 1/m.

This shows that Y is uniformly distributed over {0, . . . ,m − 1}. 2

Of course, by adding an appropriate value to the output of Algorithm RN, we can
generate random numbers uniformly in the interval {m1, . . . ,m2}, for any given m1

and m2. In what follows, we shall denote the execution of this algorithm as

y
¢← {m1, . . . ,m2}.

More generally, if T is any finite, non-empty set for which we have an efficient
algorithm whose output is uniformly distributed over T , we shall denote the exe-
cution of this algorithm as

y
¢← T .

For example, we may write

y
¢← Zm

to denote assignment to y of a randomly chosen element of Zm. Of course, this

9.3 The generate and test paradigm 287

is done by running Algorithm RN on input m, and viewing its output as a residue
class modulo m.

We also mention the following alternative algorithm for generating an almost-
random number from an interval.

Algorithm RN′. On input m, k, where both m and k are positive integers, do the
following, where ` := dlog2 me:

σ
¢← {0, 1}×(`+k)

y ← I (σ) mod m
output y

Compared with Algorithm RN, Algorithm RN′ has the advantage that there are
no loops—it always halts in a bounded number of steps; however, it has the disad-
vantage that its output is not uniformly distributed over the interval {0, . . . ,m− 1}.
Nevertheless, the statistical distance between its output distribution and the uniform
distribution on {0, . . . ,m − 1} is at most 2−k (see Example 8.41 in §8.8). Thus,
by choosing k suitably large, we can make the output distribution “as good as
uniform” for most practical purposes.

EXERCISE 9.4. Prove that if m is not a power of 2, there is no probabilistic
algorithm whose running time is strictly bounded and whose output distribution
is uniform on {0, . . . ,m − 1}.

EXERCISE 9.5. You are to design and analyze an efficient probabilistic algorithm
B that takes as input two integers n and y, with n > 0 and 0 ≤ y ≤ n, and always
outputs 0 or 1. Your algorithm should satisfy the following property. SupposeA is a
probabilistic algorithm that takes two inputs, n and x, and always outputs an integer
between 0 and n. Let Y be a random variable representing A’s output on input n, x.
Then for all inputs n, x, we should have P[B(n,A(n, x)) outputs 1] = E[Y]/n.

9.3 The generate and test paradigm
Algorithm RN, which was discussed in §9.2, is a specific instance of a very general
type of construction that may be called the “generate and test” paradigm.

Suppose we have two probabilistic algorithms, A and B, and we combine them
to form a new algorithm

C(x) : repeat y ← A(x) until B(x, y)
output y.

Here, we assume that B(x, y) always outputs either true or false.
Our goal is to answer the following questions about C for a fixed input x:

288 Probabilistic algorithms

1. Does C halt with probability 1?

2. What is the expected running time of C?

3. What is the output distribution of C?

The answer to the first question is “yes,” provided (i) A halts with probability
1 on input x, (ii) for all possible outputs y of A(x), B halts with probability 1 on
input (x, y), and (iii) for some possible output y of A(x), B(x, y) outputs true with
non-zero probability. We shall assume this from now on.

To address the second and third questions, let us define random variables L, Z,
and Y, where L is the total number of loop iterations of C, Z is the total running
time of C, and Y is the output of C. We can reduce the study of L, Z, and Y to
the study of a single iteration of the main loop. Instead of working with a new
probability distribution that directly models a single iteration of the loop, it is more
convenient to simply study the first iteration of the loop in C. To this end, we define
random variables Z1 and Y1, where Z1 is the running time of the first loop iteration
of C, and Y1 is the value assigned to y in the first loop iteration of C. Also, let H1

be the event that the algorithm halts in the first loop iteration, and let T be the set of
possible outputs of A(x). Note that by the assumption in the previous paragraph,
P[H1] > 0.

Theorem 9.3. Under the assumptions above,

(i) L has a geometric distribution with associated success probability P[H1],
and in particular, E[L] = 1/P[H1];

(ii) E[Z] = E[Z1] E[L] = E[Z1]/P[H1];

(iii) for every t ∈ T , P[Y = t] = P[Y1 = t | H1].

Proof. (i) is clear.
To prove (ii), for i ≥ 1, let Zi be the time spent by the algorithm in the ith loop

iteration, so that Z =
∑

i≥1 Zi. Now, the conditional distribution of Zi given L ≥ i
is (essentially) the same as the distribution of Z1; moreover, Zi = 0 when L < i.
Therefore, by the law of total expectation (8.24), for each i ≥ 1, we have

E[Zi] = E[Zi | L ≥ i] P[L ≥ i] + E[Zi | L < i] P[L < i] = E[Z1] P[L ≥ i].

We may assume that E[Z1] is finite, as otherwise (ii) is trivially true. By Theo-
rem 8.40 and the infinite version of Theorem 8.17 (discussed in §8.10.4), we have

E[Z] =
∑

i≥1

E[Zi] =
∑

i≥1

E[Z1] P[L ≥ i] = E[Z1]
∑

i≥1

P[L ≥ i] = E[Z1] E[L].

To prove (iii), for i ≥ 1, let Yi be the value assigned to y in loop iteration i, with
Yi := ⊥ if L < i, and let Hi be the event that the algorithm halts in loop iteration i

9.3 The generate and test paradigm 289

(i.e., Hi is the event that L = i). By a calculation similar to that made in the proof
of Theorem 9.2, for each t ∈ T , we have

P[Y = t] =
∑

i≥1

P[(Y = t) ∩ Hi] =
∑

i≥1

P[(Yi = t) ∩ Hi | L ≥ i] P[L ≥ i]

= P[(Y1 = t) ∩ H1]
∑

i≥1

P[L ≥ i] = P[(Y1 = t) ∩ H1] · E[L]

= P[(Y1 = t) ∩ H1]/P[H1] = P[Y1 = t | H1]. 2

Example 9.10. Suppose T is a finite set, and T ′ is a non-empty, finite subset of T .
Consider the following generalization of Algorithm RN:

repeat
y

¢← T

until y ∈ T ′
output y

Here, we assume that we have an algorithm to generate a random element of T (i.e.,
uniformly distributed over T), and an efficient algorithm to test for membership in
T ′. Let L denote the number of loop iterations, and Y the output. Also, let Y1 be
the value of y in the first iteration, and H1 the event that the algorithm halts in the
first iteration. Since Y1 is uniformly distributed over T , and H1 is the event that
Y1 ∈ T ′, we have P[H1] = |T ′|/|T |. It follows that E[L] = |T |/|T ′|. As for the
output, for every t ∈ T , we have

P[Y = t] = P[Y1 = t | H1] = P[Y1 = t | Y1 ∈ T ′],

which is 0 if t /∈ T ′ and is 1/|T ′| if t ∈ T ′. It follows that Y is uniformly distributed
over T ′. 2

Example 9.11. Let us analyze the following algorithm:

repeat
y

¢← {1, 2, 3, 4}
z

¢← {1, . . . , y}
until z = 1
output y

With each loop iteration, the algorithm chooses y uniformly at random, and then
decides to halt with probability 1/y. Let L denote the number of loop iterations,
and Y the output. Also, let Y1 be the value of y in the first iteration, and H1 the
event that the algorithm halts in the first iteration. Y1 is uniformly distributed over

290 Probabilistic algorithms

{1, . . . , 4}, and for t = 1, . . . , 4, P[H1 | Y1 = t] = 1/t. Therefore,

P[H1] =
4
∑

t=1

P[H1 | Y1 = t] P[Y1 = t] =
4
∑

t=1

(1/t)(1/4) = 25/48.

Thus, E[L] = 48/25. For the output distribution, for t = 1, . . . , 4, we have

P[Y = t] = P[Y1 = t | H1] = P[(Y1 = t) ∩ H1]/P[H1]

= P[H1 | Y1 = t] P[Y1 = t]/P[H1] = (1/t)(1/4)(48/25) =
12
25t

.

This example illustrates how a probabilistic test can be used to create a biased
output distribution. 2

EXERCISE 9.6. Design and analyze an efficient probabilistic algorithm that takes
as input an integer n ≥ 2, and outputs a random element of Z∗n.

EXERCISE 9.7. Consider the following probabilistic algorithm that takes as input
a positive integer m:

S ← ∅
repeat

n
¢← {1, . . . ,m}, S ← S ∪ {n}

until |S| = m

Show that the expected number of iterations of the main loop is ∼ m logm.

EXERCISE 9.8. Consider the following algorithm (which takes no input):

j ← 1
repeat

j ← j + 1, n ¢← {0, . . . , j − 1}
until n = 0

Show that the expected running time of this algorithm is infinite (even though it
does halt with probability 1).

EXERCISE 9.9. Now consider the following modification to the algorithm in the
previous exercise:

j ← 2
repeat

j ← j + 1, n ¢← {0, . . . , j − 1}
until n = 0 or n = 1

Show that the expected running time of this algorithm is finite.

9.3 The generate and test paradigm 291

EXERCISE 9.10. Consider again Algorithm RN in §9.2. On inputm, this algorithm
may use up to ≈ 2` random bits on average, where ` := dlog2 me. Indeed, each
loop iteration generates ` random bits, and the expected number of loop iterations
will be ≈ 2 when m ≈ 2`−1. This exercise asks you to analyze an alternative
algorithm that uses just ` + O(1) random bits on average, which may be useful in
settings where random bits are a scarce resource. This algorithm runs as follows:

repeat
y ← 0, i← 1
while y < m and i ≤ ` do

(∗) b
¢← {0, 1}, y ← y + 2`−ib, i← i + 1

until y < m
output y

Define random variables K and Y, where K is the number of times the line marked
(∗) is executed, and Y is the output. Show that E[K] = ` + O(1) and that Y is
uniformly distributed over {0, . . . ,m − 1}.

EXERCISE 9.11. Let S and T be finite, non-empty sets, and let f : S × T →
{−1, 0, 1} be a function. Consider the following probabilistic algorithm:

x
¢← S, y ¢← T

if f (x, y) = 0 then
y′ ← y

else
y′

¢← T

(∗) while f (x, y′) = 0 do y′ ¢← T

Here, we assume we have algorithms to generate random elements in S and T , and
a deterministic algorithm to evaluate f . Define random variables X, Y, Y ′, and L,
where X is the value assigned to x, Y is the value assigned to y, Y ′ is the final value
assigned to y′, and L is the number of times that f is evaluated at the line marked
(∗).

(a) Show that (X, Y ′) has the same distribution as (X, Y).

(b) Show that E[L] ≤ 1.

(c) Give an explicit example of S, T , and f , such that if the line marked (∗) is
deleted, then E[f (X, Y)] > E[f (X, Y ′)] = 0.

292 Probabilistic algorithms

9.4 Generating a random prime
Suppose we are given an integer m ≥ 2, and want to generate a random prime
between 2 and m. One way to proceed is simply to generate random numbers
until we get a prime. This idea will work, assuming the existence of an efficient,
deterministic algorithm IsPrime that determines whether or not a given integer is
prime. We will present such an algorithm later, in Chapter 21. For the moment,
we shall just assume we have such an algorithm, and use it as a “black box.” Let
us assume that on inputs of bit length at most `, IsPrime runs in time at most τ(`).
Let us also assume (quite reasonably) that τ(`) = Ω(`).

Algorithm RP. On input m, where m is an integer ≥ 2, do the following:

repeat
n

¢← {2, . . . ,m}
until IsPrime(n)
output n

We now wish to analyze the running time and output distribution of Algo-
rithm RP on an input m, where ` := len(m). This is easily done, using the results of
§9.3, and more specifically, by Example 9.10. The expected number of loop itera-
tions performed by Algorithm RP is (m − 1)/π(m), where π(m) is the number of
primes up to m. By Chebyshev’s theorem (Theorem 5.1), π(m) = Θ(m/`). It fol-
lows that the expected number of loop iterations is Θ(`). Furthermore, the expected
running time of any one loop iteration is O(τ(`)) (the expected running time for
generating n is O(`), and this is where we use the assumption that τ(`) = Ω(`)).
It follows that the expected total running time is O(`τ(`)). As for the output, it is
clear that it is uniformly distributed over the set of primes up to m.

9.4.1 Using a probabilistic primality test
In the above analysis, we assumed that IsPrime was an efficient, deterministic
algorithm. While such an algorithm exists, there are in fact simpler and far more
efficient primality tests that are probabilistic. We shall discuss such an algorithm in
detail in the next chapter. This algorithm (like several other probabilistic primality
tests) has one-sided error, in the following sense: if the input n is prime, then
the algorithm always outputs true; otherwise, if n is composite, the output may be
true or false, but the probability that the output is true is at most ε, where ε is a
very small number (the algorithm may be easily tuned to make ε quite small, e.g.,
2−100).

Let us analyze the behavior of Algorithm RP under the assumption that IsPrime
is implemented by a probabilistic algorithm with an error probability for composite

9.4 Generating a random prime 293

inputs bounded by ε, as discussed in the previous paragraph. Let τ(`) be a bound
on the expected running time of this algorithm for all inputs of bit length at most `.
Again, we assume that τ(`) = Ω(`).

We use the technique developed in §9.3. Consider a fixed input m, and let
` := len(m). Let L, Z, and N be random variables representing, respectively, the
number of loop iterations, the total running time, and output of Algorithm RP on
input m. Also, let Z1 be the random variable representing the running time of
the first loop iteration, and let N1 be the random variable representing the value
assigned to n in the first loop iteration. LetH1 be the event that the algorithm halts
in the first loop iteration, and let C1 be the event that N1 is composite.

Clearly, N1 is uniformly distributed over {2, . . . ,m}. Also, by our assumptions
about IsPrime, we have

E[Z1] = O(τ(`)),

and moreover, for each j ∈ {2, . . . ,m}, we have

P[H1 | N1 = j] ≤ ε if j is composite,

and

P[H1 | N1 = j] = 1 if j is prime.

In particular,

P[H1 | C1] ≤ ε and P[H1 | C1] = 1.

It follows that

P[H1] = P[H1 | C1] P[C1] + P[H1 | C1] P[C1] ≥ P[H1 | C1] P[C1]

= π(m)/(m − 1).

Therefore,

E[L] ≤ (m − 1)/π(m) = O(`)

and

E[Z] = E[L] E[Z1] = O(`τ(`)).

That takes care of the running time. Now consider the output. For every
j ∈ {2, . . . ,m}, we have

P[N = j] = P[N1 = j | H1].

294 Probabilistic algorithms

If j is prime, then

P[N = j] = P[N1 = j | H1] =
P[(N1 = j) ∩ H1]

P[H1]

=
P[H1 | N1 = j] P[N1 = j]

P[H1]
=

1
(m − 1) P[H1]

.

Thus, every prime is output with equal probability; however, the algorithm may
also output a number that is not prime. Let us bound the probability of this
event. One might be tempted to say that this happens with probability at most
ε; however, in drawing such a conclusion, one would be committing the fallacy of
Example 8.13—to correctly analyze the probability that Algorithm RP mistakenly
outputs a composite, one must take into account the rate of incidence of the “pri-
mality disease,” as well as the error rate of the test for this disease. Indeed, if C is
the event that N is composite, then we have

P[C] = P[C1 | H1] =
P[C1 ∩ H1]

P[H1]
=

P[H1 | C1] P[C1]
P[H1]

≤
ε

P[H1]
≤

ε

π(m)/(m − 1)
= O(`ε).

Another way of analyzing the output distribution of Algorithm RP is to consider
its statistical distance ∆ from the uniform distribution on the set of primes between
2 and m. As we have already argued, every prime between 2 and m is equally likely
to be output, and in particular, any fixed prime is output with probability at most
1/π(m). It follows from Theorem 8.31 that ∆ = P[C] = O(`ε).

9.4.2 Generating a random `-bit prime
Instead of generating a random prime between 2 and m, we may instead want to
generate a random `-bit prime, that is, a prime between 2`−1 and 2` − 1. Bertrand’s
postulate (Theorem 5.8) tells us that there exist such primes for every ` ≥ 2,
and that in fact, there are Ω(2`/`) such primes. Because of this, we can modify
Algorithm RP, so that each candidate n is chosen at random from the interval
{2`−1, . . . , 2` − 1}, and all of the results for that algorithm carry over essentially
without change. In particular, the expected number of trials until the algorithm
halts is O(`), and if a probabilistic primality test as in §9.4.1 is used, with an error
probability of ε, the probability that the output is not prime is O(`ε).

EXERCISE 9.12. Suppose Algorithm RP is implemented using an imperfect ran-
dom number generator, so that the statistical distance between the output distribu-
tion of the random number generator and the uniform distribution on {2, . . . ,m} is

9.5 Generating a random non-increasing sequence 295

equal to δ (e.g., Algorithm RN′ in §9.2). Assume that 2δ < π(m)/(m − 1). Also,
let µ denote the expected number of iterations of the main loop of Algorithm RP,
let ∆ denote the statistical distance between its output distribution and the uniform
distribution on the primes up to m, and let ` := len(m).

(a) Assuming the primality test is deterministic, show that µ = O(`) and
∆ = O(δ`).

(b) Assuming the primality test is probabilistic, with one-sided error ε, as in
§9.4.1, show that µ = O(`) and ∆ = O((δ + ε)`).

9.5 Generating a random non-increasing sequence
The following algorithm will be used in the next section as a fundamental subrou-
tine in a beautiful algorithm (Algorithm RFN) that generates random numbers in
factored form.

Algorithm RS. On input m, where m is an integer ≥ 2, do the following:

n0 ← m

k ← 0
repeat

k ← k + 1
nk

¢← {1, . . . , nk−1}
until nk = 1
output (n1, . . . , nk)

We analyze first the output distribution, and then the running time.

9.5.1 Analysis of the output distribution
Let N1,N2, . . . be random variables denoting the choices of n1, n2, . . . (for com-
pleteness, define Ni := 1 if loop i is never entered).

A particular output of the algorithm is a non-increasing sequence (j1, . . . , jh),
where j1 ≥ j2 ≥ · · · ≥ jh−1 > jh = 1. For any such sequence, we have

P
[

h
⋂

v=1

(Nv = jv)
]

= P[N1 = j1] ·
h
∏

v=2

P
[

Nv = jv |
⋂

w<v

(Nw = jw)
]

=
1
m
·

1
j1
· · ·

1
jh−1

. (9.4)

This completely describes the output distribution, in the sense that we have
determined the probability with which each non-increasing sequence appears as
an output. However, there is another way to characterize the output distribution

296 Probabilistic algorithms

that is significantly more useful. For j = 2, . . . ,m, define the random variable Oj
to be the number of occurrences of the integer j in the output sequence. The Oj’s
determine the Ni’s, and vice versa. Indeed, Om = em, . . . ,O2 = e2 if and only if the
output of the algorithm is the sequence

(m, . . . ,m,
︸ ︷︷ ︸

em times

m − 1, . . . ,m − 1,
︸ ︷︷ ︸

em−1 times

. . . , 2, . . . , 2,
︸︷︷︸

e2 times

1).

From (9.4), we can therefore directly compute

P
[

m
⋂

j=2

(Oj = ej)
]

=
1
m

m
∏

j=2

1
jej

. (9.5)

Moreover, we can write 1/m as a telescoping product,

1
m

=
m − 1
m

·
m − 2
m − 1

· · · · ·
2
3
·

1
2
=

m
∏

j=2

(1 − 1/j),

and so re-write (9.5) as

P
[

m
⋂

j=2

(Oj = ej)
]

=
m
∏

j=2

j−ej (1 − 1/j). (9.6)

Notice that for j = 2, . . . ,m,
∑

ej≥0

j−ej (1 − 1/j) = 1,

and so by (a discrete version of) Theorem 8.7, the family of random variables
{Oj}mj=2 is mutually independent, and for each j = 2, . . . ,m and each integer
ej ≥ 0, we have

P[Oj = ej] = j−ej (1 − 1/j). (9.7)

In summary, we have shown:

that the family {Oj}mj=2 is mutually independent, where for each
j = 2, . . . ,m, the variable Oj + 1 has a geometric distribution with
an associated success probability of 1 − 1/j.

Another, perhaps more intuitive, analysis of the distribution of the Oj’s runs as
follows. Conditioning on the event Om = em, . . . ,Oj+1 = ej+1, one sees that the
value of Oj is the number of times the value j appears in the sequence Ni,Ni+1, . . . ,
where i = em+· · ·+ej+1+1; moreover, in this conditional probability distribution, it
is not too hard to convince oneself that Ni is uniformly distributed over {1, . . . , j}.
Hence the probability that Oj = ej in this conditional probability distribution is the

9.5 Generating a random non-increasing sequence 297

probability of getting a run of exactly ej copies of the value j in an experiment in
which we successively choose numbers between 1 and j at random, and this latter
probability is clearly j−ej (1 − 1/j).

9.5.2 Analysis of the running time
Let ` := len(m), and let K be the random variable that represents the number of
loop iterations performed by the algorithm. With the random variables O2, . . . ,Om
defined as above, we can write K = 1 +

∑m
j=2 Oj. Moreover, for each j, Oj + 1 has

a geometric distribution with associated success probability 1 − 1/j, and hence

E[Oj] =
1

1 − 1/j
− 1 =

1
j − 1

.

Thus,

E[K] = 1 +
m
∑

j=2

E[Oj] = 1 +
m−1
∑

j=1

1
j
≤ 2 +

∫m

1

dy

y
= logm + 2,

where we have estimated the sum by an integral (see §A5).
Intuitively, this is roughly as we would expect, since with probability 1/2, each

successive ni is at most one half as large as its predecessor, and so after O(`) steps,
we expect to reach 1.

Let Z be the total running time of the algorithm. We may bound E[Z] using
essentially the same argument that was used in the proof of Theorem 9.3. First,
write Z =

∑

i≥1 Zi, where Zi is the time spent in the ith loop iteration. Each loop
iteration, if executed at all, runs in expected time O(`). That is, there exists a
constant c, such that for each i ≥ 1,

E[Zi | K ≥ i] ≤ c` and E[Zi | K < i] = 0.

Thus,

E[Zi] = E[Zi | K ≥ i] P[K ≥ i] + E[Zi | K < i] P[K < i] ≤ c`P[K ≥ i],

and so

E[Z] =
∑

i≥1

E[Zi] ≤ c`
∑

i≥1

P[K ≥ i] = c`E[K] = O(`2).

In summary, we have shown:

the expected running time of Algorithm RS on `-bit inputs is O(`2).

EXERCISE 9.13. Show that when Algorithm RS runs on input m, the expected
number of (not necessarily distinct) primes in the output sequence is ∼ log logm.

298 Probabilistic algorithms

9.6 Generating a random factored number
We now present an efficient algorithm that generates a random factored number.
That is, on input m ≥ 2, the algorithm generates a number y uniformly distributed
over the interval {1, . . . ,m}, but instead of the usual output format for such a num-
ber y, the output consists of the prime factorization of y.

As far as anyone knows, there are no efficient algorithms for factoring large
numbers, despite years of active research in search of such an algorithm. So our
algorithm to generate a random factored number will not work by generating a
random number and then factoring it.

Our algorithm will use Algorithm RS in §9.5 as a subroutine. In addition, as
we did in §9.4, we shall assume the existence of an efficient, deterministic primal-
ity test IsPrime. In the analysis of the algorithm, we shall make use of Mertens’
theorem, which we proved in Chapter 5 (Theorem 5.13).

Algorithm RFN. On input m, where m is an integer ≥ 2, do the following:

repeat
run Algorithm RS on input m, obtaining (n1, . . . , nk)

(∗) let (p1, . . . , pr) be the subsequence of primes in (n1, . . . , nk)
(∗∗) y ← p1 · · · pr

if y ≤ m then
x

¢← {1, . . . ,m}
if x ≤ y then output (p1, . . . , pr) and halt

forever

Notes:

(∗) For i = 1, . . . , k − 1, the number ni is tested for primality using algorithm
IsPrime. The sequence (n1, . . . , nk) may contain duplicates, and if these are
prime, they are appear in (p1, . . . , pr) with the same multiplicity.

(∗∗) We assume that the product is computed by a simple iterative procedure
that halts as soon as the partial product exceeds m. This ensures that the
time spent forming the product is always O(len(m)2), which simplifies the
analysis.

We now analyze the running time and output distribution of Algorithm RFN on
input m, using the generate-and-test paradigm discussed in §9.3; here, the “gen-
erate” part consists of the first two lines of the loop body, which generates the
sequence (p1, . . . , pr), while the “test” part consists of the last four lines of the loop
body.

Let ` := len(m). We assume that each call to IsPrime takes time at most τ(`),
and for simplicity, we assume τ(`) = Ω(`).

Let K1 be the value of k in the first loop iteration, Z1 be the running time of

9.6 Generating a random factored number 299

the first loop iteration, Y1 be the value of y in the first loop iteration, and H1 be
the event that the algorithm halts in the first loop iteration. Also, let Z be the total
running time of the algorithm, and let Y be the value of y in the last loop iteration
(i.e., the number whose factorization is output).

We begin with three preliminary calculations.
First, let t = 1, . . . ,m be a fixed integer, and let us calculate the probability that

Y1 = t. Suppose t =
∏

p≤m p
ep is the prime factorization of t. Let O2, . . . ,Om be

random variables as defined in §9.5, so that Oj represents the number of occur-
rences of j in the output sequence of the first invocation of Algorithm RS. Then
Y1 = t if and only if Op = ep for all primes p ≤ m, and so by the analysis in §9.5,
we have

P[Y1 = t] =
∏

p≤m
p−ep (1 − 1/p) =

g(m)
t

,

where

g(m) :=
∏

p≤m
(1 − 1/p).

Second, we calculate P[H1]. Observe that for t = 1, . . . ,m, we have

P[H1 | Y1 = t] = t/m,

and so

P[H1] =
m
∑

t=1

P[H1 | Y1 = t] P[Y1 = t] =
m
∑

t=1

t

m

g(m)
t

= g(m).

Third, let t = 1, . . . ,m be a fixed integer, and let us calculate the conditional
probability that Y1 = t given H1. We have

P[Y1 = t | H1] =
P[(Y1 = t) ∩ H1]

P[H1]
=

P[H1 | Y1 = t] P[Y1 = t]
P[H1]

=
(t/m)(g(m)/t)

g(m)
=

1
m

.

We may now easily analyze the output distribution of Algorithm RFN. By The-
orem 9.3, for each t = 1, . . . ,m, we have

P[Y = t] = P[Y1 = t | H1] =
1
m

,

which shows that the output is indeed uniformly distributed over all integers in
{1, . . . ,m}, represented in factored form.

Finally, we analyze the expected running time of Algorithm RFN. It is easy to

300 Probabilistic algorithms

see that E[Z1] = O(E[K1]τ(`) + `2), and by the analysis in §9.5, we know that
E[K1] = O(`), and hence E[Z1] = O(`τ(`)). By Theorem 9.3, we have

E[Z] = E[Z1]/P[H1] = E[Z1]g(m)−1.

By Mertens’ theorem, g(m)−1 = O(`). We conclude that

E[Z] = O(`2τ(`)).

That is, the expected running time of Algorithm RFN is O(`2τ(`)).

9.6.1 Using a probabilistic primality test (∗)
Analogous to the discussion in §9.4.1, we can analyze the behavior of Algo-
rithm RFN under the assumption that IsPrime is a probabilistic algorithm which
may erroneously indicate that a composite number is prime with probability at most
ε. Let ` := len(m), and as we did in §9.4.1, let τ(`) be a bound on the expected
running time of IsPrime for all inputs of bit length at most ` (and again, assume
τ(`) = Ω(`)).

The random variables K1,Z1, Y1,Z, Y and the eventH1 are defined as above. Let
us also define F1 to be the event that the primality test makes a mistake in the first
loop iteration, and F to be the event that the output of the algorithm is not a list of
primes. Let δ := P[F1].

Again, we begin with three preliminary calculations.
First, let t = 1, . . . ,m be fixed and let us calculate P[(Y1 = t) ∩ F1]. To do

this, define the random variable Y ′1 to be the product of the actual primes among
the output of the first invocation of Algorithm RS (because the primality test may
err, Y1 may contain additional factors). Evidently, the events (Y1 = t) ∩ F1 and
(Y ′1 = t) ∩ F1 are the same. Moreover, we claim that the events Y ′1 = t and F1 are
independent. To see this, recall that the family {Oj}mj=2 is mutually independent,
and also observe that the event Y ′1 = t depends only on the random variables Oj,
where j is prime, while the event F1 depends only on the random variables Oj,
where j is composite, along with the execution paths of IsPrime on corresponding
inputs. Thus, by a calculation analogous to one we made above,

P[(Y1 = t) ∩ F1] = P[Y ′1 = t] P[F1] =
g(m)
t

(1 − δ).

Second, we calculate P[H1 ∩ F1]. Observe that for t = 1, . . . ,m, we have

P[H1 | (Y1 = t) ∩ F1] = t/m,

9.6 Generating a random factored number 301

and so

P[H1 ∩ F1] =
m
∑

t=1

P[H1 ∩ (Y1 = t) ∩ F1]

=
m
∑

t=1

P[H1 | (Y1 = t) ∩ F1] P[(Y1 = t) ∩ F1]

=
m
∑

t=1

t

m

g(m)
t

(1 − δ) = g(m)(1 − δ).

Third, let t = 1, . . . ,m be a fixed integer, and let us calculate the conditional
probability that (Y1 = t) ∩ F1 given H1. We have

P[(Y1 = t) ∩ F1 | H1] =
P[(Y1 = t) ∩ F1 ∩ H1]

P[H1]

=
P[H1 | (Y1 = t) ∩ F1] P[(Y1 = t) ∩ F1]

P[H1]

=
(t/m)((1 − δ)g(m)/t)

P[H1]
=
g(m)(1 − δ)
mP[H1]

.

We may now easily analyze the output distribution of Algorithm RFN. By The-
orem 9.3, for each t = 1, . . . ,m, we have

P[(Y = t) ∩ F] = P[(Y1 = t) ∩ F1 | H1] =
g(m)(1 − δ)
mP[H1]

.

Thus, every integer between 1 and m is equally likely to be output by Algo-
rithm RFN in correct factored form.

Let us also calculate an upper bound on the probability P[F] that Algorithm RFN
outputs an integer that is not in correct factored form. Making use of Exercise 8.1,
we have

P[F1 | H1] =
P[F1 ∩ H1]

P[H1]
≤

P[F1]
P[F1 ∪ H1]

.

Moreover,

P[F1 ∪ H1] = P[F1] + P[H1 ∩ F1] = δ + g(m)(1 − δ)

≥ g(m)δ + g(m)(1 − δ) = g(m).

By Theorem 9.3, it follows that

P[F] = P[F1 | H1] ≤ δ/g(m).

Now, the reader may verify that

δ ≤ ε · (E[K1] − 1),

302 Probabilistic algorithms

and by our calculations in §9.5, E[K1] ≤ logm + 2. Thus,

δ ≤ ε · (logm + 1),

and so by Mertens’ theorem,

P[F] = O(`2ε).

We may also analyze the statistical distance ∆ between the output distribution
of Algorithm RFN and the uniform distribution on {1, . . . ,m} (in factored form).
It follows from Theorem 8.31 that ∆ = P[F] ≤ δ/g(m) = O(`2ε).

Finally, we analyze the expected running time of Algorithm RFN. We have

P[H1] ≥ P[H1 ∩ F1] = g(m)(1 − δ).

We leave it to the reader to verify that E[Z1] = O(`τ(`)), from which it follows by
Theorem 9.3 that

E[Z] = E[Z1]/P[H1] = O(`2τ(`)/(1 − δ)).

If ε is moderately small, so that ε(logm + 1) ≤ 1/2, and hence δ ≤ 1/2, then

E[Z] = O(`2τ(`)).

9.7 Some complexity theory
We close this chapter with a few observations about probabilistic algorithms from
a more “complexity theoretic” point of view.

Suppose f is a function mapping bit strings to bit strings. We may have an
algorithm A that approximately computes f in the following sense: there exists
a constant ε, with 0 ≤ ε < 1/2, such that for all inputs x, A(x) outputs f (x) with
probability at least 1 − ε. The value ε is a bound on the error probability, which
is defined as the probability that A(x) does not output f (x).

9.7.1 Reducing the error probability
There is a standard “trick” by which one can make the error probability very small;
namely, run A on input x some number, say k, times, and take the majority output
as the answer. Suppose ε < 1/2 is a bound on the error probability. Using the
Chernoff bound (Theorem 8.24), the error probability for the iterated version of A
is bounded by

exp[−(1/2 − ε)2k/2], (9.8)

and so the error probability decreases exponentially with the number of iterations.
This bound is derived as follows. For i = 1, . . . , k, let Xi be the indicator variable

9.7 Some complexity theory 303

for the event that the ith iteration ofA(x) does not output f (x). The expected value
of the sample mean X := 1

k

∑k
i=1 Xi is at most ε, and if the majority output of the

iterated algorithm is wrong (or indeed, if there is no majority), then X exceeds its
expectation by at least 1/2− ε. The bound (9.8) follows immediately from part (i)
of Theorem 8.24.

9.7.2 Strict polynomial time
If we have an algorithm A that runs in expected polynomial time, and which
approximately computes a function f , then we can easily turn it into a new algo-
rithm A′ that runs in strict polynomial time, and also approximates f , as follows.
Suppose that ε < 1/2 is a bound on the error probability, and Q(n) is a polynomial
bound on the expected running time for inputs of size n. Then A′ simply runs A for
at most kQ(n) steps, where k is any constant chosen so that ε + 1/k < 1/2—if A
does not halt within this time bound, then A′ simply halts with an arbitrary output.
The probability thatA′ errs is at most the probability thatA errs plus the probability
that A runs for more than kQ(n) steps. By Markov’s inequality (Theorem 8.22),
the latter probability is at most 1/k, and hence A′ approximates f as well, but with
an error probability bounded by ε + 1/k.

9.7.3 Language recognition
An important special case of approximately computing a function is when the out-
put of the function f is either 0 or 1 (or equivalently, false or true). In this case, f
may be viewed as the characteristic function of the language L := {x : f (x) = 1}.
(It is the tradition of computational complexity theory to call sets of bit strings
“languages.”) There are several “flavors” of probabilistic algorithms for approxi-
mately computing the characteristic function f of a language L that are tradition-
ally considered — for the purposes of these definitions, we may restrict ourselves
to algorithms that output either 0 or 1:

• We call a probabilistic, expected polynomial-time algorithm an Atlantic
City algorithm for recognizing L if it approximately computes f with
error probability bounded by a constant ε < 1/2.

• We call a probabilistic, expected polynomial-time algorithm A a Monte
Carlo algorithm for recognizing L if for some constant δ > 0, we have:

– P[A(x) outputs 1] ≥ δ for all x ∈ L;

– P[A(x) outputs 1] = 0 for all x /∈ L.

• We call a probabilistic, expected polynomial-time algorithm a Las Vegas
algorithm for recognizing L if it computes f correctly on all inputs x.

304 Probabilistic algorithms

One also says an Atlantic City algorithm has two-sided error, a Monte Carlo
algorithm has one-sided error, and a Las Vegas algorithm has zero-sided error.

EXERCISE 9.14. Show that every language recognized by a Las Vegas algorithm
is also recognized by a Monte Carlo algorithm, and that every language recognized
by a Monte Carlo algorithm is also recognized by an Atlantic City algorithm.

EXERCISE 9.15. Show that if L is recognized by an Atlantic City algorithm that
runs in expected polynomial time, then it is recognized by an Atlantic City algo-
rithm that runs in strict polynomial time, and whose error probability is at most 2−n

on inputs of size n.

EXERCISE 9.16. Show that if L is recognized by a Monte Carlo algorithm that
runs in expected polynomial time, then it is recognized by a Monte Carlo algorithm
that runs in strict polynomial time, and whose error probability is at most 2−n on
inputs of size n.

EXERCISE 9.17. Show that a language is recognized by a Las Vegas algorithm
if and only if the language and its complement are recognized by Monte Carlo
algorithms.

EXERCISE 9.18. Show that if L is recognized by a Las Vegas algorithm that runs
in strict polynomial time, then L may be recognized in deterministic polynomial
time.

EXERCISE 9.19. Suppose that for a given language L, there exists a probabilistic
algorithm A that runs in expected polynomial time, and always outputs either 0 or
1. Further suppose that for some constants α and c, where

• α is a rational number with 0 ≤ α < 1, and

• c is a positive integer,

and for all sufficiently large n, and all inputs x of size n, we have

• if x /∈ L, then P[A(x) outputs 1] ≤ α, and

• if x ∈ L, then P[A(x) outputs 1] ≥ α + 1/nc.

(a) Show that there exists an Atlantic City algorithm for L.

(b) Show that if α = 0, then there exists a Monte Carlo algorithm for L.

9.8 Notes
Our approach in §9.1 to defining the probability distribution associated with the
execution of a probabilistic algorithm is not the only possible one. For example,

9.8 Notes 305

one could define the output distribution and expected running time of an algorithm
on a given input directly, using the identities in Exercise 9.2, and avoid the con-
struction of an underlying probability distribution altogether; however, we would
then have very few tools at our disposal to analyze the behavior of an algorithm.
Yet another approach is to define a distribution that models an infinite random bit
string. This can be done, but requires more advanced notions from probability
theory than those that have been covered in this text.

The algorithm presented in §9.6 for generating a random factored number is due
to Kalai [52], although the analysis presented here is a bit different, and our anal-
ysis using a probabilistic primality test is new. Kalai’s algorithm is significantly
simpler, though less efficient, than an earlier algorithm due to Bach [9], which uses
an expected number of O(`) primality tests, as opposed to the O(`2) primality tests
used by Kalai’s algorithm.

See Luby [63] for an exposition of the theory of pseudo-random bit generation.

